Sound Intensity

Contents

Sound Intensity#

The intensity of a sound wave is defined as

(33)#\[\begin{equation} I=\frac{1}{T}\int_0^Tp(t)u(t)dt \end{equation}\]

the relation between particle velocity \(u(t)\) and pressure gradient is given by (Euler’s equation of motion)

(34)#\[\begin{equation} \nabla p(t)=-\rho_o\frac{\partial u(t)}{\partial t} \end{equation}\]

which expresses the observation that particle have a mass that will resist a change in speed under the influence of an applied force (inertial reaction).

planewave#

Assume a plane wave that propagates in the x-direction

(35)#\[\begin{equation} \hat{p}=p_+\exp{i(\omega t - kx)} \end{equation}\]

Euler equation

(36)#\[\begin{equation} \nabla p +\rho_0\frac{\partial u}{\partial t}=0 \end{equation}\]

in x-direction

(37)#\[\begin{equation} \frac{\partial p}{\partial x} +\rho_0\frac{\partial u}{\partial t}=0 \end{equation}\]

results in particle velocity

(38)#\[\begin{equation} \hat{u}_x = -\frac{1}{i \omega\rho}\frac{\partial\hat{p}}{\partial x}=\frac{k}{\omega\rho}p_+\exp{i(\omega t - kx)} = \frac{p_+}{\rho c}\exp{i(\omega t - kx)}=\frac{\hat{p}}{\rho c} \end{equation}\]

The paricle velocity is obtained by integration and using the Euler approximation to the pressure gradient one gets

(39)#\[\begin{equation} u(t)=u(0)-\frac{1}{\rho}\int_0^t{\nabla p(\tau) d\tau} \end{equation}\]

Using \(u(0)=0\) one ontains fot the sound intensity

(40)#\[\begin{equation} I=-\frac{1}{T}\frac{1}{\rho} \int_0^Tp(t)\Biggl(\int_0^t{\nabla p(\tau) d\tau}\Biggr) dt \end{equation}\]

Using next the Fourier synthesis

(41)#\[\begin{equation} p(t)=\frac{1}{2\pi}\int_{-\pi}^{\pi}P(\omega)\exp(-i\omega t)d\omega \end{equation}\]

and with

(42)#\[\begin{equation} \int_{0}^{t}\exp(-i\omega \tau)d\tau=\frac{i}{\omega}\Biggl(\exp(-i\omega t)-1\Biggr) \end{equation}\]

and therefore

(43)#\[\begin{equation} \int_0^t \nabla p(\tau)d\tau= \frac{i}{2\pi}\int_{-\pi}^{\pi}\Biggl(\frac{\nabla P(\omega)}{\omega}\Biggr)\Biggl(\exp(-i\omega t)-1\Biggr)d\omega \end{equation}\]

we obtain

(44)#\[\begin{equation} I=-\frac{i}{\rho}\frac{1}{2\pi}\frac{1}{2\pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} P(\omega') \Biggl(\frac{\nabla P(\omega)}{\omega}\Biggr) \Biggl(\frac{1}{T}\int_0^T \exp(-i\omega' t)\Biggl(\exp(-i\omega t)-1\Biggr) dt \Biggr) d\omega d\omega' \end{equation}\]

Assume the temporal ingration

(45)#\[\begin{equation} \frac{1}{T}\int_0^T \exp(-i\omega' t)\Biggl(\exp(-i\omega t)-1\Biggr) dt = \delta (\omega' + \omega = 0) \end{equation}\]

evaluates to one if and only if \(\omega'+\omega=0\) and to zero otherwise, so that

(46)#\[\begin{equation} I=-\frac{i}{\rho}\frac{1}{2\pi}\frac{1}{2\pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} P(-\omega) \Biggl(\frac{\nabla P(\omega)}{\omega}\Biggr) d\omega d\omega' \end{equation}\]

or

(47)#\[\begin{equation} I=-\frac{i}{\rho}\frac{1}{2\pi} \int_{-\pi}^{\pi} P^*(\omega) \Biggl(\frac{\nabla P(\omega)}{\omega}\Biggr) d\omega \end{equation}\]

Approximating the sound pressure and pressure gradient by pressure measurements of 2 sensors labeled (1,2)

(48)#\[\begin{equation} P(\omega)=\frac{P_2(\omega)+P_1(\omega)}{2} \end{equation}\]
(49)#\[\begin{equation} \nabla P(\omega)=\frac{P_2(\omega)-P_1(\omega)}{d_{2,1}} \end{equation}\]
(50)#\[\begin{equation} P^*(\omega)\nabla P(\omega) = \frac{1}{2d_{2,1}}\{(P_2^*(\omega)+P_1^*(\omega)) (P_2(\omega)-P_1(\omega))\} \end{equation}\]
(51)#\[\begin{equation} P^*(\omega)\nabla P(\omega) = \frac{1}{2d_{2,1}}\{ |P_2(\omega)|^2 - |P_1(\omega)|^2 +P_2(\omega)P_1^*(\omega)-P_2^*(\omega)P_1(\omega)\} \end{equation}\]

With \(|P_2(\omega)|^2 = |P_1(\omega)|^2\)

(52)#\[\begin{equation} P^*(\omega)\nabla P(\omega) = \frac{1}{2d_{2,1}}\{ P_2(\omega)P_1^*(\omega)-P_2^*(\omega)P_1(\omega)\} \end{equation}\]

or

(53)#\[\begin{equation} P^*(\omega)\nabla P(\omega) = \frac{i}{d_{2,1}}\text{Im}\{ P_2(\omega)P_1^*(\omega)\} \end{equation}\]

and finally the spectral sound intensity along sensor pair (1,2) is approximated by

(54)#\[\begin{equation} I_{2,1}(\omega)=-\frac{i}{\rho d_{2,1}} \frac{ P^*(\omega)\Delta P(\omega)}{\omega} =-\frac{1}{\rho d_{2,1}} \frac{\text{Im}\{P_2(\omega) P_1^* (\omega)\}}{\omega} \end{equation}\]